Агроводком
(347) 281-65-13
(347) 216-65-13
  Главная / Электродвигатели / Статьи / Основные нагрузочные свойства асинхронных двигателей
Основные нагрузочные свойства асинхронных двигателей

Основные нагрузочные свойства асинхронных электродвигателей

Асинхронные двигатели в процессе эксплуатации работают с нагрузками на валу от холостого хода до номинальной. Напряжение и частота сети могут сохранять номинальные значения или длительно изменяться в зависимости от режима работы энергосистемы. Под нагрузочными свойствами асинхронного двигателя при отклонениях напряжения и частоты подразумеваются изменения основных параметров, характеризующих его установившийся режим, -ЭДС магнитного потока, вращающего момента, скольжения и частоты ротора, модуля и фазы тока ротора, намагничивающего тока, модуля и фазы тока статора.

Встречается необходимость использования двигателя для работы в сети с напряжением и частотой, отличающимися от его номинальных значений, в случаях:
а) применения двигателей, рассчитанных на частоту 60 Гц, в сети с частотой 50 Гц;
б) работы двигателя с нормальным соединением обмотки статора в звезду, в сети другого номинального напряжения — при соединении обмотки статора в треугольник;
в) переключения обмотки статора на звезду вместо нормального соединения треугольником для уменьшения потерь активной мощности и потребления реактивной мощности незагруженных двигателей.

Рассмотрим сначала в общих чертax явления, происходящие в двигателе при отклонении от номинальных значений нагрузки на валу (момента сопротивления приводимого двигателем механизма), напряжения и частоты питающей сети. По основным параметрам режима определяются такие важные факторы, как нагрев активных частей двигателя, изменение потерь и КПД, потребление из сети активной и реактивной мощностей, изменение начального вращающего момента при неподвижном роторе (для оценки возможности пуска двигателя при отклонениях напряжения и частоты).

Определим общий характер изменения перечисленных выше величин, исходя из основных соотношений, принимая для упрощения момент сопротивления механизма не зависящим от угловой скорости ротора. Изменение нагрузки на валу двигателя при номинальных напряжении и частоте питающей сети. Рассмотрим влияние увеличения нагрузки на валу на основные параметры установившегося режима. Вследствие увеличения нагрузки угловая скорость ротора несколько снижается, а следовательно, скольжение увеличивается до такого значения, при котором вращающий момент двигателя уравновешивает повышенный момент сопротивления. Поскольку при скольжениях меньше критического сопротивление статора составляет незначительную долю общего сопротивления двигателя, то ЭДС, магнитный поток и намагничивающий ток практически не изменяются при изменении нагрузки.

Увеличение вращающего момента двигателя сопровождается соответствующим увеличением тока ротора. С увеличением скольжения возрастает фазный угол приведенного тока ротора, что приводит к увеличению реактивного тока двигателя, практически равного сумме индуктивного намагничивающего тока и реактивной составляющей приведенного тока ротора. В связи с ростом активной и реактивной составляющих тока статора последний также возрастает при увеличении нагрузки на валу. Увеличение токов ротора и статора обусловливает возрастание потерь в меди обмоток.

У двигателей нормального исполнения с короткозамкиутым и с фазным роторами при нормальной работе с закороченным реостатом угловая скорость ротора при изменении нагрузки в пределах номинальной изменяется незначительно и поэтому мощность на валу увеличивается практически пропорционально моменту сопротивления. В связи с увеличением реактивного тока двигателя при увеличении нагрузки увеличивается реактивная мощность, потребляемая из сети. При уменьшении нагрузки на валу скольжение, ток ротора и его фаза, а также ток статора уменьшаются, что приводит к снижению потребления двигателем из сети активной и реактивной мощностей.

При определении полезной мощности на валу двигателей с повышенным скольжением, а также двигателей с фазным ротором, работающих нормально с регулировочным реостатом, следует учитывать изменение угловой скорости ротора. Изменение напряжения при номинальной частоте. Предположим, что напряжение, подводимое к обмотке статора двигателя, работающего с постоянным моментом сопротивления, уменьшилось. Вследствие уменьшения напряжения уменьшаются ЭДС двигателя и магнитный поток. Вращающий момент двигателя, пропорциональный квадрату напряжения, окажется при прежнем скольжении меньше, чем момент сопротивления, и скольжение двигателя увеличится до такого значения, при котором вновь наступит равенство между указанными моментами.

Увеличение скольжения вызовет возрастание тока ротора и увеличение угла сдвига между приведенным током ротора и напряжением сети. При уменьшении напряжения намагничивающий ток уменьшается, а ток статора, равный геометрической сумме приведенного тока ротора и тока холостого хода, в зависимости от загрузки и соотношения между намагничивающим током и током ротора может увеличиться или уменьшиться. При увеличении напряжения увеличатся ЭДС и магнитный поток, а скольжение и ток ротора уменьшатся. Намагничивающий ток увеличится, а ток статора может увеличиться или уменьшиться в зависимости от загрузки двигателя и указанного выше.

Таким образом, понижение напряжения всегда вызывает увеличение тока ротора, а увеличение напряжения - уменьшение тока ротора. Работа с напряжением, пониженным более чем на 5 % номинального, допустима согласно ГОСТ 183-74 только при условии, что нагрузка двигателя меньше номинальной. При несоблюдении этого обстоятельства возможен перегрев обмотки ротора и, как следствие, ее преждевременный износ. Мощность, развиваемая двигателем, останется практически без изменения, так как угловая скорость ротора изменится незначительно.

Изменение частоты при номинальном напряжении

Рассмотрим случай, когда двигатель с постоянным моментом сопротивления на валу питается при номинальном напряжении от сети с частотой меньше номинальной. Уменьшение частоты вызовет увеличение магнитного потока и увеличение вращающего момента. Поскольку момент сопротивления остается постоянным, скольжение уменьшится так, чтобы сохранилось равновесие между вращающим моментом двигателя при пониженной частоте и моментом сопротивления. Вследствие увеличения потока уменьшится ток ротора, а ток холостого хода увеличится. Ток статора может увеличиться или уменьшиться, так же как для случая повышения напряжения. Таким образом, понижение частоты практически равнозначно увеличению напряжения.

Следовательно, если при понижении частоты соответственно уменьшить напряжение, то магнитный поток, а следовательно, и токи холостого хода, ротора и статора останутся такими же, как и при нормальной работе. При этом будет иметь место некоторое изменение потерь в стали, а следовательно, и активной составляющей тока холостого хода. Эти изменения практически не скажутся на токе статора. Однако существенным отличием от рассмотренных выше двух режимов будет значительное изменение угловой скорости ротора, практически пропорциональной частоте статора.

Во всех случаях, когда имеет место изменение угловой скорости ротора двигателя, происходит изменение полезной мощности на валу и производительности механизма. Полезная мощность на валу изменяется пропорционально произведению момента сопротивления на угловую скорость. Поэтому для рассмотрения режима работы двигателей при любых значениях нагрузки на валу, напряжения и частоты питающей сети необходимо знать характеристики моментов сопротивления механизмов

   Статьи по теме:

Основные неисправности и отказы электродвигателей Основные неисправности и отказы электродвигателей.
Электродвигатели, изготовленные на заводе и прошедшие весь комплекс приемосдаточных испытаний, исправны и по своим характеристикам соответствуют паспортным данным. Большинство отказов происходят по причинам, возникающим в процессах, следующих за выпуском готовой машины ...  >>>
Асинхронные двигатели серии 4ААсинхронные двигатели серии 4А.
Серия трехфазных асинхронных двигателей 4А была первой серией, которая удовлетворяла рекомендациям Международного электротехнического комитета (МЭК) по увязке габаритных размеров электрических машин с установочно-присоединительными размерами...  >>>
Применение синхронных и асинхронных электродвигателей Применение синхронных и асинхронных электродвигателей.
Одним из преимуществ синхронных двигателей по сравнению с асинхронными является то, что они обладают большей перегрузочной способностью. Весьма важно, что перегрузочная способность синхронных двигателей может быть увеличена за счет автоматического регулирования тока возбуждения ...  >>>

все статьи  >>>